In-batch negatives 策略
WebSep 1, 2024 · 接下来就要说到cross-batch negative sampling,这个方法可以解决in-batch负采样中,存在batch size受到gpu显存大小,从而影响模型效果。 在训练过程中,我们往 … Web负样本(negative ... 这样做目的是提高A的recall,提高B的precision,保证每个batch中,各类别间生成的正样本数量趋于1:1 ... ,比如,发现模型输出大框背景的频次偏高,那么这个时候我们就要改变随机采样负样本的策略,就要针对性的增加小分辨率feature map上的负 ...
In-batch negatives 策略
Did you know?
WebApr 8, 2024 · 样本数目较大的话,一般的mini-batch大小为64到512,考虑到电脑内存设置和使用的方式,如果mini-batch大小是2的n次方,代码会运行地快一些,64就是2的6次方,以此类推,128是2的7次方,256是2的8次方,512是2的9次方。所以我经常把mini-batch大小设 … WebSep 27, 2024 · 本方案使用双塔模型,训练阶段引入In-batch Negatives 策略,使用hnswlib建立索引库,并把标签作为召回库,进行召回测试。 最后利用召回的结果使用 Accuracy 指标来评估语义索引模型的分类的效果。 下面用一张图来展示与传统的微调方案的区别,在预测阶段,微调的方式则是用分类器分类得到的结果,而基于检索的方式是通过比较文本和标签 …
WebDec 22, 2016 · 优化方法系列 Batch的好处 当训练数据太多时,利用整个数据集更新往往时间上不显示。batch的方法可以减少机器的压力,并且可以更快地收敛。 当训练集有很多冗 … Web3.在有监督的文献数据集上结合In-Batch Negatives策略微调步骤2模型,得到最终的模型,用于抽取文本向量表示,即我们所需的语义模型,用于建库和召回。 由于召回模块需要从千万量级数据中快速召回候选集合,通用的做法是借助向量搜索引擎实现高效 ANN,从而实现候选集召回。 这里采用Milvus开源工具,关于Milvus的搭建教程可以参考官方教程 …
WebJan 12, 2024 · In-batch negatives 假设在一个mini-batch中有 B 个questions,每个question都与一个相关的passage相关联。 设 Q 和 P 为一批总量为 B 的questions … Web对比可以发现,首先利用 ERNIE 1.0 做 Domain-adaptive Pretraining,然后把训练好的模型加载到 SimCSE 上进行无监督训练,最后利用 In-batch Negatives 在有监督数据上进行训练能获得最佳的性能。 3.5 向量召回 终于到了召回,回顾一下,在这之前我们已经训练好了语义模型、搭建完了召回库,接下来只需要去库中检索即可。 代码位于 …
WebDec 13, 2024 · 同时在训练时采用In-batch negative策略,相比REALM提升了2个多点。同时又证实了Pipeline方法的高效性。 优化了半天Retriever,那Reader层面还有什么优化呢?能不能用生成模型? 2024年的RAG [10] 就用DPR Retriever+BART模型来了一版生成式开放域QA:
WebJan 13, 2024 · 3.在有监督的文献数据集上结合In-Batch Negatives策略微调步骤2模型,得到最终的模型,用于抽取文本向量表示,即我们所需的语义模型,用于建库和召回。 由于召回模块需要从千万量级数据中快速召回候选集合,通用的做法是借助向量搜索引擎实现高效 ANN,从而实现候选集召回。 这里采用Milvus开源工具,关于Milvus的搭建教程可以参考 … easy cupcake filling recipeWebJul 14, 2024 · 策略1:在用户未点击的部分,选择流行度高的作为负样本(更有代表性) 策略2:在用户未点击的部分,删除用户近期已发生观看行为的电影 策略3:在用户未点击的部分,统计相应的曝光数据,取Top作为负样本(多次曝光仍无转化) Q2:正负比例有个大致的主流数值吗? 1? 5? 10? A2:建议交叉验证后选择合适的数值 Q3:测试集是否需要 … cura home care packagesWeb而Batch Normalization其实主要就是在解决这个问题。. 除此之外,一般的神经网络的梯度大小往往会与参数的大小相关(仿射变换),且随着训练的过程,会产生较大的波动,这就 … easy cupcake decorating hacksWebSep 14, 2024 · Cross-batch Negatives 具体来说,并行训练时首先计算每个 GPU 内的段落embedding,然后共享这些embedding到所有 GPU 中。 即通过从其他 GPU 收集段落来作为每个问题的附加负样本以增加负样本的规模。 单 GPU 和多 GPU 都可以应用Cross-batch Negatives。 只有一个 GPU 可用时,可以通过累加的方式实现,同时权衡训练时间。 … easy cupcake frosting designsWebJan 14, 2024 · 3.在有监督的文献数据集上结合In-Batch Negatives策略微调步骤2模型,得到最终的模型,用于抽取文本向量表示,即我们所需的语义模型,用于建库和召回。 ... cura home hannoverWebAug 5, 2024 · 负例构造:使用in-batch negatives的方式,即随机采样一个batch中另一个输入作为的负例。 说白了就是batch中其他的样本就是负例。 损失如下: image.png 而且这种dropoutmask 比数据增强也强很多,文章中实验指标如下: image.png 为什么会强这么多呢? 这是个好问题 可能是,增强嘛,无非对输入的原始词做改变,无论是删除,替换,回译 … cura home incWebJan 13, 2024 · 3.在有监督的文献数据集上结合In-Batch Negatives策略微调步骤2模型,得到最终的模型,用于抽取文本向量表示,即我们所需的语义模型,用于建库和召回。 由于召回模块需要从千万量级数据中快速召回候选集合,通用的做法是借助向量搜索引擎实现高效 ANN,从而实现候选集召回。 这里采用Milvus开源工具,关于Milvus的搭建教程可以参考 … cura helpers